Polynomial identities in Novikov algebras
نویسندگان
چکیده
In this paper, we study Novikov algebras satisfying nontrivial identities. We show that a algebra over field of zero characteristic satisfies identity some unexpected “universal” identities, in particular, right associator nilpotence, and nilpotence the commutator ideal. This, implies if only it is Lie-solvable. also establish any system identities follows from finitely many them, same holds for multilinear Some analogous simpler statements are proved commutative differential algebras.
منابع مشابه
Algebras, Dialgebras, and Polynomial Identities *
This is a survey of some recent developments in the theory of associative and nonassociative dialgebras, with an emphasis on polynomial identities and multilinear operations. We discuss associative, Lie, Jordan, and alternative algebras, and the corresponding dialgebras; the KP algorithm for converting identities for algebras into identities for dialgebras; the BSO algorithm for converting oper...
متن کاملColength of *-Polynomial Identities of Simple *-Algebras
We compute the sequence of colengths in the cocharacters of the ∗polynomial identities of the ∗-simple algebra M2(F )⊕M2(F ), char(F ) = 0.
متن کاملPolynomial Identities for Tangent Algebras of Monoassociative Loops
We introduce degree n Sabinin algebras, which are defined by the polynomial identities up to degree n in a Sabinin algebra. Degree 4 Sabinin algebras can be characterized by the polynomial identities satisfied by the commutator, associator and two quaternators in the free nonassociative algebra. We consider these operations in a free power associative algebra and show that one of the quaternato...
متن کاملFermionic Novikov Algebras Admitting Invariant Non-degenerate Symmetric Bilinear Forms Are Novikov Algebras
Gelfand and Dikii gave a bosonic formal variational calculus in [5, 6] and Xu gave a fermionic formal variational calculus in [13]. Combining the bosonic theory of Gelfand-Dikii and the fermionic theory, Xu gave in [14] a formal variational calculus of super-variables. Fermionic Novikov algebras are related to the Hamiltonian super-operator in terms of this theory. A fermionic Novikov algebra i...
متن کاملFunctional identities of degree 2 in CSL algebras
Let $mathscr{L}$ be a commutative subspace lattice generated by finite many commuting independent nests on a complex separable Hilbert space $mathbf{H}$ with ${rm dim}hspace{2pt}mathbf{H}geq 3$, ${rm Alg}mathscr{L}$ the CSL algebra associated with $mathscr{L}$ and $mathscr{M}$ be an algebra containing ${rm Alg}mathscr{L}$. This article is aimed at describing the form of additive mapppi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2023
ISSN: ['1432-1823', '0025-5874']
DOI: https://doi.org/10.1007/s00209-023-03231-8